首页  |  English  |  中国科学院
  • 学术报告
An approach to nonlinear dimension reduction for survival data with reproducing kernel Hilbert spaces
主讲:崔文泉教授,中国科学技术大学统计与金融系
举办时间:2014.12.1;10:00am    地点:N226

摘要:We present a new methodology for nonlinear dimension reduction for survival data by using the theory of reproducing kernel Hilbert space (RKHS). By means of the double slicing procedure and the kernel-based method of transforming the infinite dimension case into finite dimension one, we build kernel sliced inverse regression in a RKHS rigorously. The resulting estimator of the nonlinear efficient dimension reduction variates is shown to be consistent under some regularity conditions. Simulations are used to illustrate the efficacy of the method. 

Key words: Reproducing kernel Hilbert space, censored data, nonlinear dimension reduction, double slicing procedure. 

附件下载:
中国科学院系统科学研究所 2013 版权所有 京ICP备05002810号-1
北京市海淀区中关村东路55号 邮政编码:100190, 中国科学院系统科学研究所
电话:86-10-82541881  网址:http://iss.amss.cas.cn/