首页  |  English  |  中国科学院
  • 学术报告
Bayesian and Maximum Likelihood Estimation for Gaussian Processes on an Incomplete Lattice
主讲:Prof.Jonathan Stroud (George Washington University)
举办时间:2014.12.22;10:00am    地点:N514

Abstract: This paper proposes a new approach for Bayesian and maximum likelihood parameter estimation for stationary Gaussian processes observed on a large lattice with missing values. We propose an MCMC approach for Bayesian inference, and a Monte Carlo EM algorithm for maximum likelihood inference. Our approach uses data augmentation and circulant embedding of the covariance matrix, and provides exact inference for the parameters and the missing data. Using simulated data and an application to satellite sea surface temperatures in the Pacific Ocean, we show that our method provides accurate inference on lattices of sizes up to 512 x 512, and outperforms two popular methods: composite likelihood and spectral approximations.

附件下载:
中国科学院系统科学研究所 2013 版权所有 京ICP备05002810号-1
北京市海淀区中关村东路55号 邮政编码:100190, 中国科学院系统科学研究所
电话:86-10-82541881  网址:http://iss.amss.cas.cn/